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Improved Heart Rate Variability Signal Analysis from
the Beat Occurrence Times According to the IPFM
Model

Javier Mateo* and Pablo Laguna

Abstract—The heart rate variability (HRV) is an extended through the model generates the beat occurrence times. PSD
tool to analyze the mechanisms controlling the cardiovascular methods try to infer the spectrum of the modulating signal from
system. In this paper, the integral pulse frequency modulation ha heat occurrence times, usually from the Heart Rate (HR) or
model (IPFM) is assumed. It generates the beat occurrence times - ! . .
from a modulating signal. This signal is thought to represent the the Heart Period (HP) S'gna|§ or by calculating the “Spectrum
autonomic nervous system action, mostly studied in its frequency Of Counts” (SPC) [13]. We will show how the HR, the HP, or
components. Different spectral estimation methods try to infer the SPC’s do not contain the same spectral information as the
the modulating signal characteristics from the available beat modulating signal according to the IPFM model. In this work,
timing on the electrocardiogram S|gn_al. These methods estimate we introduce a new HRV time domain signal, the Heart Timing
the spectrum through the heart period (HP) or the heart rate . L
(HR) signal. We introduce a new time domain HRV signal, the (HT) signal, .used. to deduce t.he characteristics of the heart con-
Heart Timing (HT) signal. We demonstrate that this HT signal, trol modulating signal. We will demonstrate that the proposed
in contrast with the HR or HP, makes it possible to recover an HT signal can be used to recover the spectrum of the modu-

unbiased estimation of the modulating signal spectra. In this |ating signal with no spurious contribution and no distortion, in

estimation we avoid the spurious components and the Iow—passContrast to the HR-, HP-, or SPC-related signals. We will ex-

filtering effect generated When_ ar_"_ilyzmg HB O_r HP. tensively study these HRV-related signals as the first but funda-
Index Terms—Heart rate variability, heart timing, IPFM model,  mental stage in comparing the methods used in the estimation

nonuniform sampling, spectral analysis. of the PSD of the HRV.
To show experimentally the validity of the estimation
|. INTRODUCTION methods, and given that the spectrum of a real modulating

. . signal of the heart activity is unknown, we have developed a
POWESI_speﬁgsl (_jensny (Ple) es(';lmate of the hgart "B ntrolled experiment with known modulating signats(?).
variability ( ) is commonly used as a noninvasive ®Sthese signals come from reported autoregressive (AR) models

oflthedneurﬁl control c;:‘the ca(;dlovascular sr)]/st_em, S'rl‘c?‘ It e resenting real data [8], [16] and other computer generated
related to the sympathetic and parasympathetic regu at'on%){nals. Thesen(t) signals are used as inputs to the IPFM

the sino-atrial node. The frequency domain analyzes have ¢
tributed to improve the understanding of the HRV since last th
decades [1]-[4]. The HRV has been confirmed as a predic
of mortality following myocardial infarction [5], it has been
studied in diabetics [6] and in cases of sudden cardiac death [7].
Areview of the HRV research activity over the last two decades
was presented in [8]. The IPFM model is based on the hypothesis that the sym-

The integral pulse frequency modulation (IPFM) model hagthetic and parasympathetic influences on the sino-atrial node
been assumed for many authors to explain the mechanisms wugitibe represented by a single modulating signét,), and the
by the autonomic system to control the heart rate [9]-[15]. THeat trigger impulse is generated when the integral of this func-
IPFM model supposes a modulating signal, which when actitign reaches a threshold [10].

The beat occurrence time series can be generated by means

, . _ _of the IPFM model as
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bdel to generate beat sequences. The beat sequences are ana-
zed with different HRV estimation methods and the obtained
ectra are compared to the original ones ofrti{e) signals.

Il. THE IPFM MODEL AND THE TIME DOMAIN SIGNALS
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henceyn(t) = 0if ¢ < 0. Another important consideration im-signal. Using the generalization given by (2), the continuous
posed onn(t) is that it is a band-limited signal with negligible 2¢(¢) signal can be written as
PSD over a frequency typically around 0.4 Hz. .

The objective of HRV PSD estimation methods is to infer the ht(t) = a(t) T —t = / m(r) dr. 4)
spectral properties af.(t) from the heart beat positions,. The 0

choi_ce 9f the t_ime domain_signal that be_st represent_s this imc(;V{ﬁus, the continuous HT signal is defined simply as the integral
mation is the first problem in HRV analysis. So far, this probleer m(#)

hals btehen ad::f]sged througfg?hth;gl_? itntervlalslé Known aSH';P_S'gI:heht(t) signal is a straightforward HRV-related signal and,
nais, through the inverse ot tne Intervals, known as SIQéing linearly related with.(¢), it does not bring any distorted

nals, or through the “event series,” whose spectrum is known.ﬁ§ . L . . g
. ormation with it. At this point, we should note that different
Spectrum of Counts” (SPC) [11], [13]. Moreover, we will stud I on With | IS point, W u !

he HT sianal | db 171 A g Dobservation times, leads to differeht(t) functions since the
the HT signal, recently proposed by us [17]. Also, we wi 'SUNcean heart rate and the dynamic heart rate also depend on

guish between the unevenly spaced signals, measutg it the analyzing time. However, the instantaneous heart rate,

instants (time referred), and the evenly spaced sequences, ea- WV /T. al be obtained
sured at eaclth beat (beat referred). The nonequispaced s?g%r m(t))/T, always can be obtained as

nals will be denoted in small caps and will be function of time. L+m(t)  1+ht(t)

A final “s” will be appended to the notation of the equispaced T = T )
signals that will be function of “beat number.” Since these si%— S
nals are not linearly related to the nonequispaced counterpai®,any observation timel” always must be calculated as the
its spectral properties are quite different. The following sectiofidéan of the RR intervals in the analyzing period.

formalize these signal definitions and introduce the generaliza-F"0m the spectral point of view, taking into account thet)
tion of the continuous time IPFM model. This will allow thelS causal and with zero-mean, its Fourier transform is

quantification of the inherent distortion of each HRV-related M(w M(w

signal. #1(w) = 2 ey = L2 )
Jw Jw

A. Continuous Time IPFM Model Generalization The Fourier transform of thét(t), HT(w), is the same

: I as M(w), except for the factorl/jw that comes from the
The values of each time domain signal at the beat occurrenc ; . o . .
. ' . integration. Ifm(¢) is band limited,ht(¢) is also band limited
times, t;, are all we know. However, we can find continuous

time signals whose samplestatcoincide with these values. Of and if we knewni(#) or its regularly spaced samples satisfying

. . : . the Nyquist criterion we could determine exacif(w) that is
course, there are infinite continuous time signals that meet this . )

) ; .the focus of our interest. However, we only know the HT signal
requirement but we can generalize the IPFM model to define

. : ; . uhevenly sampled at the beat occurrence timest:). All
these signals with some logic. Thus, we can rewrite (1) as ; . . .
HRV-related signals are irregularly spaced and experience this

() problem. In Section Ill, an analysis of the irregular sampling
v / 1+m() . (2) Problem will be shown.
0 r The corresponding sequence of the HT signaltdig(k) =

. . . kT — tx, and its continuous time generalization will be
t(x) being a continuous function that solves the IPFM model

equation, and whose samplesat k = 1,2,. .. aret(k) = #. hts(z) = oT — t(x). (7)
Now, we can define the different continuous signals and we

can describe how these signals are related with the modulatihgan be related witfk¢(¢) through (4) by means of the recur-

signal,m(t). We will obtain the unevenly sampled signals asence

functions oft(x) or simplyt, and the evenly spaced sequences
will be functions ofz. hts(x) = ht((x)) = ht(aT — hts(z)). (8)

We will use this kind of recursive relation to obtain an approx-
imation ofhts(x) from ht(t), which will be all the more accu-
1) The HT signal: The formulation of the IPFM model given rate, the more the iterative process is repeated. The initial value
in (1) can be rewritten as of hts(x) can be taken at(+T"). The recurrence expressed in
(8) converges iflat ()] < 1 [19]. This condition is always
t met in HRV becausght ()| = |m(t)| < 1. If m(¢) is known
ht(t) = KT — tr = /0 m(r) dr ©) thenht(t) can be calculated by (4) and (8) permits us to study
the spectral properties &fs(x) analytically. In the study of the
whereht(t;) defines theunevenly spaced sampletthe HT different time-domain signals these relations are useful to show
signal and they can be easily calculated through the beat tlee inherent distortion of each HRV-related signal, even before
currence times [17], [18]. Eacht(¢x) reflects the deviation any PSD estimation method has been applied.
of the position of each beat from the mean RR interval. We 2) The HP Signal: The classical time-domain heart period
have emphasizeghevenly spaced samplescause behind this signal samples are defined/as(t;.) = ¢, —tx—1 and following
sampled signal we can find the continuous version of the Hfie continuous time generalization the heart period signal can

B. Time Domain Signals
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be defined agp(t) = #(x) — t(x — 1). The relation with the modulated by:t(¢) (or, equivalently, frequency modulated by
ht(t) signal and, thus, witin(t), can be established through (4)n(t)). The convolutionM (w) * FM(w) term is the spectrum

by the following recurrence relation: of the same carrier modulated in amplitude and in frequency
by m(t). Once eliminated, the dc component, at the base band

hp(t) = T — ht(t) + ht(t — hp (t) ). (9 the spectrum is the one of modulating signal but with added

urious components resulting from the modulated carrier at

The corresponding sequence of the heart period signalss
hps(k) = tp — tx—1 and its spectrum is known as “interval’*
spectrum” or “tachogram” [12]. Its continuous time generaLl—_
ization will be hps(z) = t(x) — t(x — 1). Itis related with the
heart timing sequence, using (7), by the following relation:

= 1/T.
The general analysis of this spectrum is highly complicated.
he FMw) andM (w) x« FM(w) terms tend to compensate each
other, obtaining spectral components lower than each one in-
dividually. The contaminating spectral contribution at the base
hps(z) =T — hts(z) + hts(z — 1). (10) band depends on the maximum amplituderdt) and its spec-
tral distribution. Whenn(t) has a smooth spectrum, the contri-
3) The HR Signal:Another classically used time-do-bution usually presents a hyperbolic shape, descending from the
main signal is the heart rate signal whose samples ar@dulated carrier. The resultis a smallincrementin the high fre-
hr(ty) = 1/ (tx — tx—1). The continuous heart rate signal camuency of the HRV spectrum estimation. Howeverift) has
be defined agr(t) = 1/ (t(x) — t(x — 1)). The relation with a sharp spectrum or it is a multitone signal the amplitude of spu-
the ht(t) signal can be established by the following recurrena#ous components may be comparable to those presenttin

relation: Fig. 1 shows graphically all these signals for(t) =
1 0.4cos(2m - f1 - t) with fi = 0.1 Hz andT" = 1 s. We have
hr(t) = (11) chosen an unusually large amplituderaft) to show clearly
T — ht(t)+ ht <t — —) the signal distortion. In this figure and throughout this paper
hr(t) . . o .
the units of the time domain signals are scaled according to
The corresponding sequence of the heart rate signaltligir relationship with the dimensionless(t) signal. Thus,
hrs(k) = 1/(tx —tr—1) and its spectrum is known asHP-related signals are divided iy, HR signals are multiplied
“Spectrum of the Inverse Intervals” [12]. Its continuous timéy 7°, and HT signals—since they are related with the integral
generalization will behrs(z) = 1/(t(z) —t(x — 1)), and of m(t)—are multiplied byjw in the frequency domain, giving
using (7), itis related with the heart timing sequence by in all cases dimensionless magnitudes. This procedure allows

1 obtaining homogeneous results from different time domain
= . (12) signals independentl df’. Also, the mean is removed from
T — hts(w) + hts(z — 1) each time domain signal since the meanroft) is zero.
4) The Event SeriesOnce the beat occurrence timgs,are Regarding to the relative phase of each time domain signal
known, the most intuitive function which represents this kind despect ton(t), HT signals will have a 90phase shift due to
signal, is a impulse train of Dirac delta, each one placeg .at the integration, HR signals will have no phase shift, and HP

hrs(z)

Then, the continuous function of time is signals will be 180 out of phase due to the inversion. Thus,
- in this Fig. 1 shaded areas show the differencengt) with
spe(t) = Z §(t— ty) (13) e_ach time domain signal. Circles represent the beat occurrence
= times.
and its spectrum, known as “Spectrum of Counts” is C. Two-Tone Harmonic Distortion
00 ' We have made an algebraic study of the inherent distortion of
SPQw) = Z e IWtk, (14) the above signals when(t) is formed by two tones
k=—oc

m(t) = a1 cos(2nm fit + @1) + az cos(2m fot + ¢2).  (17)
In the Appendix, it is shown that SRP@G) can be approximated

at the frequency band of intergst < 1/27) as In the case of thepc(t) signal, in [9] and [20]-[22], a quan-
1 tification of the different spectral components is given when
SPQw) ~ = {§(w) + M(w) + FM(w) + M(w) *FM(w)}  m(t) is formed by a single-tone or multitone functions. Thus,
T for m(t) given by (17), (13) can be given as

(15)
. . 1 a1 as
where FMw) is given by spe(t) = 7 + 75 cos(wit + 1) + o5 cos(wat +¢2)
27 27 - - = 1 nifi 712f2>
= : 2 +2 =+
FM(w) .7-"’1'{2 cos < T t+ T ht (t)>} (16) Tg::l nl;m it <T no no
Interpreting (15), we see that the spectrungaf(¢) is formed o, <“1”0> o, <“2”0>
by a Dirac delta impulse at zero frequency plus the modulating C\AT \ LT
s

signal spectrum) (w), plus two additional terms. The FM) 2mng
term corresponds with a carrier of frequenty= 1/7, phase neos |t mwt +nawst + ¢ (18)
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TABLE |
AMPLITUDE OF THE SPECTRAL COMPONENTS OF THET - spc(t) SIGNAL

Frequency Spectral Amplitude of T-spc(t)
0 1
fi; fo ai; Gz
Smfitnafs AT (hrnsfitnafy) Ju (S ) Jno( )

idea is simple. We will use the continuous definitions given
; _ PN N N by (4) and (8)—(12). When the definition involves a recurrence
TTTT """ T """ TT TTTTTT T T T T?TT relation, it is developed several times. The number of times
c) ’ pea sev '
i depends on the approximation level that we want to reach but

0
tl [2 IJ (4 t5 tﬁ ‘7 tB !9 thtH '12 t\3 t14 t15 t|6 t'|7 'IK l‘lQIZO

¢ seconds the complexity increases considerably with each iteration. The
L o T, next stage is to develop its Taylor series expansion with respect
JOR IS T NS S T R T N to thea; anda» variables, supposing;, a> < 1. Finally, the
: series is reorganized in terms of each spectral component.

Table Il shows the results obtained. In the case of the HP sig-
nals the amplitudes have been dividedByand in the case of
the HR signals, they have been multiplied’ByAlso, the vari-
ablesy;, = «nfiT andws, = = f>1 have been introduced for
the sake of simplicity. Except for thie:(¢), all the other signals
are nonlinearly related withu(¢). They have spectral compo-
nents atn f; + nf2, m,n being any pair of integers. We show
onlythe first significant term of the amplitude of the main spec-
A A e tral components. In the case &f(¢) signal, Table Il shows the
L P P PV L P exact amplitude of the spectral components, which correspond
# seconds exactly to the ones presentin(t).

Fig. 2 shows the amplitude of the spectral components of the
studied signals forn(t) = 0.1 cos(27 - 0.1 - t) + 0.1 cos(27 -
0.25 - t) andT = 1 s. This figure, Table |, and Table Il permit
us to extract some preliminary conclusions about the inherent
properties of the time domain signals.

» The spectrum ofn(t) can be exactly recovered bw -
HT(w).

» All HP or HR signals attenuate the original tone ampli-
tude, all the more when its frequency increases. Thus, they
have intrinsically a low-pass filtering effect.

] o e A » The harmonics are lower in HR signals than in HP
2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 and they are lower imp(t), hr(t), and ht(¢) than in
x(t) hps(x), hrs(x), andhts(x). See, also, Fig. 1.
» Except for theht(t) signal, hr(t) presents the smallest
]lfig- 1 UTilmf; doméii; Signalls forznrgt)R = 0-t4 (;:os((b%ﬂélt) Wifht spurious contribution. Howevehrs(x) makes a large
1 = . Z an = S. (a epresentsn(t). epresents . . . . . .
«(t) = J' (14m(r)/T - dr. (c) Representspe(t). (d) Represents spurious contribution at the intermodulation frequencies,
27 fy - ht(t). (€) Representap(t)/T — 1. (f) Represent&r(t) - T — 1. specially atfs — f;.

(9) Represents f, - hts(x). (n) Representhps(x)/T — 1. () Represents o The spurious contribution afpe(t) has a different origin
hrs(x) - T'— 1. Shaded areas show the differences between each time domain

signal andm(t) (the phase ofn(t) has been changed according to the phase  and is noticeable at frequencies greater thafir'.
shift of each represented signal). Circles represent the beat occurrence times.

. . . ) I1l. THE IRREGULAR SAMPLING
with 7" the mean heart periods,, = 2« f,, J,, the first kind

Bessel function of order and¢ a complicated phase term. At Whichever signal related with HRV is inherently irregularly
the base band the most significative terms are givendoy 1.  sampled. In the analysis of the HRV, three main alternatives have
In this case, Table | shows the amplitude of the main spectt@en used to get around this problem: By assuming that HRV
components of thepc(t) signal multiplied by7” with »; and signals are evenly sampled, by using direct spectral estimation
ne integers. methods from the irregular sampled signal and by using inter-
In the case of thent(t), hts(z), hp(t), hps(z), hr(t) and polating methods to recover an evenly sampled signal from the
hrs(zx), the development is truly cumbersome but the basigegularly spaced samples prior to the PSD estimation.
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TABLE I
MAIN SPECTRAL COMPONENTS OF THERt'(¢), hts’(x), hp(t)/T, hps(x)/T,T - hr(t), AND T - hrs(x) SIGNALS

Frequency Exact spectral amplitude of jw-FT {ht(t)}
=0 fi; fo 0; a1; az
f=2f1; 2f> 0; 0
f=hHh<f 0
Frequency First significant term of the spectral amplitude of jw-FT {hts(z)}
F=0; fi; f2 0; a1; a2
f=2f; 2f af; a3
2
f=fith v
Frequency First significant term of the spectral amplitude of FT {hp(t)} /T
=0 f1; f2 L fsinvy; Zsinvy
2 2
f=2f1; 2f2 s sinvy; g2 sinvy
f=H=xh 2—‘;112‘,22- (v1 £ v2) (1/1 sin® vy + vo sin? 1/1) Frivs sinz(ul Fua)
Frequency First significant term of the spectral amplitude of FT {hps(x)} /T
F=0; f1; f2 1; U sinwy; ?Sinl/z
f=2f1; 2fs %}l—sin21/1; %};sinm/z
f=fi£f M";y%zsin(ul:l:uz)
Frequency First significant term of the spectral amplitude of - FT {hr(t)}
f=0; fi; fa ) 1 Ssiny; Lsinv,
2
Ff=2f1; 2f2 2—‘11,? sin, \/sin2 v1 — vy 8in2v; + v 5‘% sin Vz\/sin2 vy ~ v Sin2vy + v3
f=fitfo %22—\/4 sin? vy sin® vo 41 (vy £vs —25in 20y sin? va £vo(vy £ vo F 25in 205 sin® vy F w1 v sin® (v, F vs)
Frequency First significant term of the spectral amplitude of T- FT {hrs(x)}
F=0; f1; f2 . 1; ,’f—isinul; ;—Zsinw
f=2f1; 2fs 2—'1'/’?-(sin2 vy — v 8in 20y ); 2—'11/3"§v(sin2 vy — V2 8in 2u3)
f=f1 + f2 %}1%122- (COS(V] + I/2) - COS(Vl F llz) + (1/1 + l/z) sin(l/1 + Vz))
od b - S eIt which is a well-known result. Whe#, is reg-
. ularly spaced, this summation is a Dirac delta train spaced every
Y 7 i - i i
PO VI VI Bopc()T | _27r/T d_ue to orthogonallty of expone_nna_ll functlons_. In thls_ca_se,
3 Sht'(t) if the signal satisfies the Nyquist criterion, there is no aliasing
2 N @ his’(z) and the spectrum of sampled signal is the periodic repetition
F 006 koo VI VI ®hp(t)/T | ... P -
E v v Wips(z)/ T of the spectrum of the original signal. When the samples are
NA NA . - .
E N Shrt)T not regularly spaced, the orthogonality of exponentials is lost
\’ NA - . . . . . . . .
g 004 Lo N VR Bhrs(@)T |..... and this summation is not a Dirac delta train. This summation is
@ the above described SPC. Thus, given a continuous time signal
002 Fovercir ¥ VI ha(t) (ha can beht, hp, or hr) whose spectrum il X (w), the
A NA . . . .
/ corresponding direct estimated spectrum is
¥ Y7 v
¥, ¥ Y
0 N2 4TI N/ Y
fy fy-fy 21, f; 12626, fi+ 18, f-6,-26 36, 2§, Jore)
Frequency W
HX,(w)=HX(w)* »_ ¢ = HX(w)* SPQw)
Fig. 2. Amplitude of the main spectral components of the time-domain signals k=—co 19
form(t) = 0.1cos(27f1 -t) 4+ 0.1cos(2nf,-t)andT = 1s. (f, =0.1Hz. ) ) o ( )
f» =0.25Hz. andf, = 1/T = 1 Hz.) Leaving out the terms of minor significance , KM and
M(w) * FM(w), in (15) the direct estimated spectrum may be
A. HRYV Signals Assumed to be Evenly Sampled approximated as
This is the simplest and quickest method, but the assumption
of regularly spaced samples when these are not regularly spaced, HX,(w)~ HX(w) + HX(w) * M (w) (20)

causes distortion and generates spurious harmonics. The ob-
tained spectra will be that corresponding to #pe(x), 2rs(x),  In HRV, the second term may be significative aHd, (w) may

andhts(z) signals. be rather different from the original on X (w). We should
) o note that in HRV the position of the samples is not independent
B. Direct Spectral Estimation Methods of the signal and, thus, the same information is twice present: in

When a signal is sampled, the spectrum of the sampled sigtted time-domain signal, whose spectrunH (w), and in the
is the result of the convolution of the original spectrum witlposition of the samples, whose spectrum is 8PC
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C. Interpolation Methods 1t : — )
a) SN lincar interpolation
Spline interpolation obtains a continuous piecewise polyno-  os} N T ot

mial reconstruction of its irregularly spaced samples [23]. From "
the evenly spaced samples of the signal, a usual PSD estimatio &
can be carried out. Moreover, in the case of the HT signal, the § °¢f
obtained spline can be algebraically differentiated and in this & .|
way, we can obtain the instantaneous heart rate from (5).

The interpolation can be seen as a time-variant filter that
acts with different frequency response as a function of the -e2f
space between interpolated samples. Thus, the spectrum ot
tained by means of this method is filtered with a time-variant 1
filter F(w,t). It is true that the filter response depends on b)os}
the time distribution of the samples. However, an estimation = o
may be made for the filter response. The impulsive response g ®’

0.6

L N L X . . s s : s "
-5To —4To -3To -2To -~To o To 2Te 3To 4Ta 5To

~~~~~~ linear interpolation
—_ - 4 order "cubic" spline
—_— 14 order spline

may be calculated by interpolating a unitary pulset at 0, é“'
preceded and followed by zeros regularly spacedZat gzz
Intermediate points are obtained by interpolating along with g _

e
“»

the interpolation factor. The filter response is calculated as
the spectrum of the impulsive response. This response will
affect at those interbeat areas of heart pefigd Since heart 7 e s -

period changes from beat to beat, the filtering effect changes Frequency

and becomes time varying.

Fig. 3 shows the estimated impulsive response and the Spl@'g_ 3. Linear interpolation with interpolation order 16, cubic spline and
trum for linear, fourth-order “cubic” spline and fourteenth—ordegigieegg?;i%;ﬁgg”e interpolation methods. (a) Impulsive response. (b)
spline interpolation methods.

The linear interpolation has a cutoff frequency that goes fro ) :
0.36/1p Hz when the interpolation factor is two and goes tg' Low-Pass Filtered Event Series (LPFES)
0.32/T; Hz when the interpolation factor is 16 or higher. The The LPFES,Ipfes(t), is the signal obtained by low-pass
cubic spline method has a cutoff frequency of 0Z&Hz and it filtering the spc(t) signal [10], [11]. This signal is calculated
has a negligible dependence on the interpolation factor. Finaf,regular intervals of” s. and then, the fast Fourier transform
the cutoff frequency obtained for the fourteenth-order spline (§FT) is taken to compute the spectrum. From this point of view,
0.48/T, Hz. The linear method has the lowest cutoff frequendjie obtained spectrum would be LPRES = Hy(w) - SPQu),
and the highest sidelobes as expected due to its inferior perféfiere Hp(w) is the response of the filter. Also, the authors
mance. Increasing the order of the spline, we establish a cloEek] introduced an improvement inserting a “dummy pulse”
response to an ideal filter. However, experimentally we do nat the midpoint of each RR interval. In this way, the carrier
get any improvement with orders greater than fourteen' duef[gquency involvedin SPCis Virtua”y doubled and the nonlinear
the finite numerical precision and round off errors. Because tgentribution resulting from the carrier modulation is minimized.
cutoff frequency is relative tb/T; frequency, in absolute terms However, this pulse introduces an effect like linear interpolation
of frequency, the filtering effect will be more significant wher@iving alow-pass filtered spectrum as we will show. This method

°o o
-~ N

<

)
-
s.
5

the heart rate is low. was originally implemented [11] dealing with real time and
hardware limitations. Originally the filter had a cosine squared
IV. PSD ESTIMATION METHODS OFHRV spectral response and was computed with relative low time

) ) resolution. In this paper, this method has been implemented with
In the study of HRV, different spectral analysis methods atg, jgeq| filter response with a cut off frequency of 0.5 Hz, and
used [11]-{16]. We will show an experimental comparativgith the insertion of a“dummy pulse” at the midpoint of each RR
analysis of the time-domain alternatives presented in this pagggrval. Note that without the dummy pulse the obtained results

in combination with the main different PSD estimation methodg,id be essentially the same that with the SPC method.
used in HRV. We have studied the following methods.

C. DFT of the Sequences (FHP, FHR, FHT)

A. "Spectrum of Counts” (SPC) The power spectrum is directly computed by taking the FFT of
This method is computed using (14) and it has been usg different sequencégs(k), hrs(k) or hts(k). The irregular
by many authors. Its importance is practical as an estimatisamplingis overcome assumingthat HRV signals are evenly sam-
method of long-standing and theoretical for its relation with theled. Thisis the simplestand quickest method, butthe assumption
irregular sampling problem. We will show how its performancef regular spaced samples when these are not regularly spaced,
is effective with HRV signals but this method introduces coreauses distortion and generates spurious harmonics. When the
tamination at high frequencies. Thus, if the modulating signaps(k) sequence is used, this method is known as “Spectrum of
has enough power at frequencies greater thafl’, the results Intervals” or “Tachogram”[13], [14]. With thérs(k) sequence,
present a high-frequency spurious contribution. this method is known as “Spectrum of Inverse Intervals” [13],
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[14]. We will also present this method applied to thes(k)
sequence to show the harmonic distortion caused by suppos g
regular sampling whenthere was irregular.

Fliebed ogn | fo e
D. Lomb Method (LHP, LHR, LHT) 0 0102030405 0 01 0203 04 05

The Lomb-Scargle periodogram is a direct method to ci £ : S '
culate the power spectrum of a unevenly sampled signal [2 -

0 01 02 03 04 05

[24], [25]. A fast algorithm is proposed in [26], [27] to cal-

culate the Lomb periodogram. In HRV signals, the results o0 # 2 03 04 05

tained by the generalized periodogram define®&s{(w) =  § 005, 0.05 e

(1/N) TN hx(ty)e~% and by the Lomb method are sim- % ggs | o |

ilar [24]. ThePHX(w) spectrum is exactly that obtained by di- 5 0o |- 0021

rect estimation in (19). In this paper, the Lomb-Scargle per & *° [ 175 T {75 * 0Ty *% i ,

odogram has been used as the representative of the direct s . s 02,03 04 05 0 0102030405 O 0102030405

tral estimation methods. £ o0 : : :
g

E. Berger Method (BHP, BHR, BHT) Ehedl

In [14], an algorithm was presented so as to minimize tt= 0 —"—"
spurious spectral components. This method generates a s § 005
wise heart rate signal from the instantaneous heart rate. Tﬁg:g; o
signal is sampled at 4 Hz and then is convolved with a rec¢3 ooz2|-
angular window of 0.5 s of duration. This method can be seé“’; """ DN E o N 0
as a zero-order hold system, whose holding times are irreg 0 0102030405 0 0102030405 0 01 02030405
larly spaced at the beat occurrence times and recoversareg. . oo Frequency (o) Frequency (Fz)
spaced signal by filtering and sampling the stepwise signal. Thig 4. Amplitude spectra fom(t) = 0.1 cos(2m - 0.1 - £) + 0.1 cos(2 -
obtained spectrum is then corrected by multiplying it by the i{fzél . t) andT = 1 s with differéntTDSIi) estimates.'Seefext fbr details.
verse of the filtering response caused by the convolution with

the rectangular window. We extended this algorithm, originally

for the hr(t;,) signal, to thehp(t;) andht(t;) HRV signals to different assumptions witt(t). First, we assumed that(¢) is
compare it to the other methods. formed by two-tone function whose frequencies are well known.

We intend to corroborate the theoretical results presented in this
F. DFT of Interpolated Signals (FHPIn, FHRIn, FHTIn) paper.

The sequence of irregular samples is previously interpolated’ "€ second kind consists of generating the series of beats
at regularly spaced time intervals. Then, the FFT is used to cB¥ means of realistic AR models. We have used for modeling
culate the spectrum. We have used spline interpolation with difiem(t) signal AR models that approximately match the PSD
ferent orders at a sampling frequency]_sjfT Hz. The order of at Supine rest and after head—up tilt described in [8] Then, the
the spline interpolation is shown by the “n” suffix, for examplé&eries of beats is generated as output of the IPFM model and the
FHRI4 is the abbreviation of this method for cubic interpolatioR SD estimation achieved by the described methods.
applied to HR signal.

03 04 05 0 01 02 03 04 0. 0 01 02 03 04 05
. 005 . . 0.05 e

A. Two-Tone Simulation
G. AR Method of Interpolated Signals (ARHPIn, ARHRIn, . . . .
We carried out the same two-tone simulation presented in

ARHTIN) . ) .
this paper so as to compare experimentally the results obtained

Many authors use parametric AR estimation methods of th@th the previously mentioned theoretical study. In this case,
PSD in HRV analysis [16]. There are several methods to esfie modulating signal was:(t) = 0.1 - cos(2n - 0.1 - ) +

mate theu;, coefficients of an AR model from the studied timg, ; . cos(2m - 0.251 - £) with a mean heart period & = 1 s.

series. Thus, the Yule-Walker, Burg, covariance or modified CQye generated 1000 beats following the IPFM model equation.
variance are different methods for estimating AR coefficientgye caiculated the different time-domain signals and finally we
We used the modified covariance method but we did not Obserélﬁplied the PSD methods described in this paper. We slightly
asignificant difference with other AR methods in the HRV analy, e 45ed the frequency of the second tone so as to observe the
ysis. The order used will be indicated in the abbreviation S“ﬁ'éecond harmonic spurious contribution (0.502 Hz reflected to

Thus, ARHRI9 \.Ni" be a ninthjorder AR e§tima_tion_method aP9.498 Hz due to aliasing and with the SPC method coming from
plied to the HR interpolated signal. A cubic spline mterpola‘uoT/T —2.0.251 = 0.498 Hz) and falling into the base band

at a sampling frequency af/T’ Hz was used previously to re- 0 — 0.5 Hz). We chose exactly 1000 beats to have an integer

construct an evenly sampled signal from the uneven sample iumber of periods of both tones avoiding spectral leakage due
to the finite observation time [28].
Fig. 4 shows the obtained results. In this case, we have
We carried out two types of experiment in order to compapresented the amplitude spectra to show both the incorrect
the different PSD estimates that have been proposed. We madwlitude of the tones estimated and the spurious spectral

V. COMPARISONBETWEEN THE ESTIMATED SPECTRA
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TABLE Il
COEFFICIENTS ANDNOISE VARIANCE OF THE AR MODELS

Case ag a as asz a4 as ag az o’

Rest 1 -1.6265 1.8849 -1.8327 12970 -0.7758 0.4133 -0.2136 404-10°°
Tiltk 1 -1.8149 21365 -2.1703 1.7194 -0.9221 0.5311 -0.3262 137-10~°

components generated. The SPC spectrum has been represent *°¢ o015
without its unitary delta at 0 Hz. The AR spectral estimates REST TILT
have not been calculated since they are not suitable for tone-like . oo
spectral estimation [29].

PSD (1/Hz

B. AR Simulation
To compare the behavior of the spectra estimates to a more o o

realistic signal, we generate the beat series fronnét) signal * " Froqueney Gy * Y ey Gy
following a typical spectrum from a real subject. We have used , ,

for modeling then(#) signal two AR models that approximately™9- > Modeled PSD ofu(t) for the Rest and Tilt cases.

match the PSD at supine rest and after head-up tilt described in

[8]. The PSD of the AR model is given by with the frequency, we calculated the mean normalized error

MNE( f) defined as

1 20
PSD(f) = 0% |5 21 —
D) = o™\ Sz (21) > (Psts) - Pso)
_ =1
whereo? is the variance of the driving white noise with zero MNE(f) = 20 (22)
mean and4(z) = >°¢_, ax - z~* is the AR polynomial of Z PSD.(f)
orderp. i=1

Table 11l shows the coefficients and the variance used for . . L o~
sampling rate of 1 Hz. The order in both cases was7. Fig. 5 vhere PSIX/) Is the PSD of theth realization of the “Original

shows both modeled PSD spectrum” andPSD( f) is the PSD estimate with each method

These PSD distributions have been tested. each one with t(\)I\pothezth realization. With our sign convention, when the error

mean heart periodd{= 0.8 s andl’ — 1.2 s). We preferred to iS positive the power estimation is greater than the original and

keep constant the PSD distributions and change the mean hégr(? versa. Fig. 6 shows the mean of the 20 realizations of the

. . . riginal spectrum” (top left) and the mean of the 20 estima-
period. In relative terms to the mean Nyquist frequency, for the : ;
. . ... 11ons made with each method (rest of graphics) for the rest case
same PSD wheff’ is larger, the high-frequency contribution is

with " = 1.2 s. The modeled PSD is shown as a dashed line
larger. . ; . .
and a systematic PSD bias error can be observed in some esti-
In each one of the four cases, we generated 20 rand(r)nr%tion methods. However, Fig. 7 shows the MMEof each
realizations of NV = 1024 samples of the modulating signal X » 19

min] (sampling frequency of 1/T Hz), following the PSD Ofmethod and it plearly reflects their behavior ywth Fhe frequency.
. e present this case because the PSD estimation methods be-
each AR model. Then, the:[n] sequences are interpolate . . . .
L . . have worse whefT’ is larger. The results obtained with the tilt
obtaining 128 - V samples by means of zero padding at its

spectra. This operation keeps the spectrum and obtains enotaze are quite similar and their graphs are not presented in this

.ot L . hbjgper. The methods based on the HP signal have not been shown
samples to perform the numerical integration involved in t Since they have a similar or even a worse performance than those
IPFM model. We calculate the cumulative integral (@f + y s

mfn])/ T and we obtain the beat occurrence tmeg, as *UCL T € TN S8 S RN (R
the instants when this integral crosses= 1,2---N. [See X 9 9 g y

. . . . N . f each method we integrated the absolute value of the error
Fig. 1(b)]. Additional cubic spline interpolation is carried ou .
: . . . ... In all the frequencies and we calculated the mean of the nor-
in the neighborhood of; to determine the; instants with . .
e Lo ; malized error powefMNEP) of each method defined as
precision. Bearing in mind that the meansofr] is zero, we

also obtain 1024 beats &t. Finally, the PSD estimation is +(1j2m)
achieved by all the above described methods. The order of the 20 / ‘PSD(f) — PSD(f)| df
chosen model of the AR methods for estimation was 9 MNEP = 1 Z —(1/2T)
for the rest case angl = 15 for the tilt case following the 20 ~ +(1/21) bs p
minimum optimal order test [8]. /—(1/2T) D(f) df
The spectrum of each realization of thgn] is named “Orig- (23)

inal spectrum” and is the objective to be estimated. Each re@he calculated MNEP is an effective quantitative summary
ization is considered as an independent recording to estimafehe estimation methods quality. However, in HRV the PSD
its PSD. To show clearly the global behavior of each methasl usually divided into different frequency bands [8]. We
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PSD (1/Hz)

PSD (1/Hz)

PSD (1/Hz)

PSD (1/Hz)

PSD (1/Hz)

PSD (1/Hz)

PSD (1/Hz)

: A SN : : 0 : ’ : :
0 01 02 03 04 05 0 01 02 03 04 05
Frequency (Hz) Frequency (Hz)

0 0.1 02 03 04 0 0.1 02 03 0.4
Frequency (Hz) Frequency (Hz)

gig- ? PSD estimation results for the Rest model @het 1.2 s. See textfor i 7. psD estimation error for the Rest model dhe= 1.2 s. See text for
etails. details.

carried out the simulation with 1024 beats that approximatelyye present in Fig. 8, at the left column the MNEP of the four
represent between 13 and 20 min of electrocardiogram (Ecgigjdies, atthe middle column, the meadhfi ¢, Er.r, andExr
recording. We used the following bands, recommended in [§]ng at the right hand column, the standard deviation of these
LF (0.04-0.15 Hz) and HF (0.15-0.4 Hz). This choice rejectgrors. A logarithmic representation of the different magnitudes
the ULF band(f < 0.003 Hz), with uncertain information, has been used to represent together the magnitudes in spite of
specially with nonstationary recordings, and the UHF banfejr great differences. In this figure, the methods have been
(f > 0.4 Hz) normally involved with noise. The more usuabdered attending to their performance from the left (best) to
clinical indices are based on the power in each band relatiyg right (worse). The methods with a lower performance (FHP,

to the sum of the power in the three bands. We calculaigfhr FHT, and LHT) and those based on the HP signal have not
the relative power VLF/AF, LF/AF, and HF/AF where AFpeen shown [30].

= VLF 4+ LF +HF and VLF, LF, and HF is the power
in the corresponding band. Then, we calculated the errors

Evir = l//l_\l:lﬂl\: — VLF/AF, Eip = El\:/ﬂ: — LF/AF, VI. DISCUSSION
Eyr = HF/AF — HF/AF as the difference of the relative The above simulations permit us to reinforce the conclusions

power obtained with each method and the one obtained frdrom Section 1I-C and to extract some new ones:

the original realization ofm[n]. These errors are signed Asregards the time domain signal used, we observe that both,
magnitudes whose sum in the three bands is zero. If tthee HP or the HR signal present a strong and similar low-pass
error is positive in one band, the relative power estimated fikering effect due to the fact that the generation of these signals
excessive in this band and vice versa. Thus, the tendencyirofolves this effect inherently (see Figs. 4, 6, and 7). Moreover,

each method to increase one band power in relation to tiihese signals do not have a linear dependence with the modu-
others can be easily detected. lating signal and harmonics appear increasing the noise and dis-
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Case Rest and T' = 0.8 s.

f" %“%5“ w&’é" v%““% ‘b%fggs’
Case Rest and T' = 1.2 s.

\héof » ,.&yfq&ﬁ%& .

Case Tilt and T = 0.8 s.

el e e
Case Tilt and T'=1.2 s.

S

IS OFE S S e*‘w @w@ Yy

(o By BB E- ) Ew |

Fig. 8. MNEP, mean, and standard deviation of estimation efts-, E£r.r, and Egr for each method in the four studied cases.

torting the spectra nonlinearly (see Fig. 4). This effect is mokeetween beats. They have a poor performance, as it was ex-

noticeable in the HP signal than in the HR signal (see Figs. dected (see Figs. 4, 6, and 7). The direct estimation methods as

2, and 4). However, the HT signal and the Event Series do rthe Lomb method (LHP, LHR, LHT) also introduce significa-

present the low-pass filtering effect and the distortion is vetive distortion due to the convolution with SR [See (19)

low in the Event Series and it is null with the HT signal (seand (20)]. Moreover, if the modulating signal has very low-fre-

Figs. 4, 6, and 7). guency components, as usual with smooth spectra, the LHT
As regards the method used to estimate the PSD, with sigethod becomes unusable (See Figs. 6 and 7). This is due to

nals with smooth spectra and relative low power at high fréhe fact thatHT(w) = M(w)/jw has very high amplitudes

guencies, the SPC method performs well, more effectively thahlow frequencies. WhehHT(w) is multiplied by jw to re-

the other classical methods (see Figs. 6 and 7). However, if t@verM (w), the first term in (20) will be the corred¥/ (w) but

spectrum is sharp, spurious components can appear at high tihe-second term will be not negligible. It will have thET'(w)

guencies whose amplitude is very sensitive to the original spéxigh amplitudes displaced due to the convolution wittfw).

tral distribution (see Fig. 4). The LPFES method introducesTdne sum of both terms increases the amplitude of the high-fre-

noticeable low-pass filtering effect due to the insertion of thguency components strongly that afterwards need even be mul-

dummy pulse in the midpoint of each RR interval (see Figs. Bplied by jw. This can be summarized as

7). This can be seen as a process similar to linear interpolation.

The direct estimation over the sequences (FHP, FHR, FHT), . M(w)

supposing that are equispaced, introduces a very important no#® ° LHT(w) = M(w) + jow - <J—w * M(w)> # M(w)-

linear distortion due to the artificial compression or expansion (24)
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The Berger method (BHP, BHR, BHT) reduces high-fredlations based on AR models with PSD considered as standard
quency contamination of the HP, HR, or HT but it presenia real subjects. In these simulations we compared most of the
an added low-pass filtering effect in all cases (see Figs. 4,rBethods known to us. Results show how the method based on
and 7). This is because, even this method corrects the filteritg interpolation of the HT signal has achieved the best results
effect of the convolution with the rectangular window, ifollowed by the SPC method. It is needed to detect the position
cannot correct the time-variant low-pass filtering due to thef each QRS complex with a precision better than 0.25 ms. to
“sample and hold” process involved. Methods based on splinaintain the performance of the best methods.
interpolation present a reduced low-pass filtering effect dueln summary, we may conclude that to study HRV assuming
to the interpolation, which has been practically eliminated ke IPFM model, the time-domain signal that better recovers the
increasing the order of the spline (see Figs. 6 and 7). The resuttsdulation properties of the sino-atrial node is the HT signal.
obtained with the AR methods present inferior performandée PSD estimation method that gives the best modulation spec-
than those nonparametric ones in spite of the simulated sigtraim estimates is the Fourier transform of the HT signal interpo-
was generated through an AR model. The obtained mean eleded by high order splines. This technique get the lower error
of the clinical indices and the standard deviation was larger the estimate of the clinical indices measured as PSD at the
than with the other methods (see Fig. 8). These results arevibF, LF, and HF bands as used in clinical studies. Moreover,
agreement with those obtained in [31]. the practical null distortion achieved by the high order spline

We demonstrated that a robust interpolation method in canterpolation of the HT signal make it suitable for a continuous
junction with the HT signal presents the best HRV estimatiotime-domain estimate of the instantaneous heart rate. This tech-
The improvement relative to the SPC is more noticeable whaigue will allow to use time frequency methods in situations
the power at high frequencies is greater, or for the same PSD disaling with nonstationary ECG recording, such as stress test.
tribution, when the mean heart period is larger. This condition
in the cases studied is met wh#&h=1.2 s. and effectively, in APPENDIX
these cases the performance of the SPC method clearly worsens SPCAT THE BASE BAND

(see Fig. 8). In general, when the original PSD has higher rela-.l.he spe(t) signal represents a problem equivalent to the

tive power at high frequencies, more error .Wi” be introduge_d. oblem of pulse position modulation (PPM) which appears in
All these effects are reflected in the estimate of the Clm'cfgr(odulation systems [21]. In [21], it is shown that

indices as it is summarized in Fig. 8.

The previous cases were simulated with great precision ii
the beats positiof;). In real situations, the determination of §(t = KT+ A(t))
the fiducial point of the QRS complex position involves errors™ =

due to noise or low sampling frequency of the ECG recording. |1+ A'(%)] - 2o

We made the same simulation but reducing the resolution of T {1 +2 Zl o8 < T (t+ A(t))>} ’
the beat occurrence times. This is equivalent to add white noise " (25)
uniformly distributed over the originak. positions. The white

noise introduced in a time-domain signal becomes colored\ie can rewrite (13) using (3) as

the PSD spectral estimation, increasing quadratically with the oo

frequency [32]. In [32], it is shown for the HP signal that a de- spe(t) = Z §(t — KT + ht(ts)) . (26)

creased sampling frequency in ECG increases the noise power ke oo

at high frequencies in PSD estimation. This occurs in all estima- ,

tion methods presented in this paper [30]. The best performafRePUr C@seA(t) = ht(t), A'(t) = m(t) and|m(t)] < 1.
methods (FHTI and SPC) were more sensitive to the low resBaUS: Using (25)

lution simply because these methods have no biased error, and 1+m(t)

the methods with poorer performance did not suffer this errorsP<(t) = 7T

appreciably because they have a significant biased estimation o 210

error. Thus, to keep the performance of the best methods it is : {1 +2 > cos < 7 (t+ht (ﬂ))} (27)
needed to detect the position of each QRS complex with a pre- ng=1

cision better than 0.25 ms. This refinement can be accomplishggly the spectrum ofpc(t) is
by interpolating the ECG on the neighborhood of each QRS.

1
SPQu) = = (6(w) + M(w))
T
VIl. CONCLUSION oo
In this paper, we present a study analyzing the problems of the * {5(w) +2 Z
ng:l

application of the different time domain signals used in HRV as-
suming the IPFM model. We introduced the new HT signal that 2
9 9 FT {Cos < "0 (4 4 bt (t)))} } . (28)

overcomes these problems. We analyzed the irregular sampling

problem and we show that an adequate interpolation method

with appropriate frequency response is a better solution than di-The more important spectral contamination at the base band
rect estimation methods as Lomb method. We carried out simm-given by the fundamental frequency modulation, that is, for
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no = 1. Greater values of, require greater convolution orders [20] P. Laguna, G. B. Moody, and R. G. Mark, “Power spectral density of
to reach the base band and its amplitude will be very small.
Then, at the base band the spectrum can be approximated as

[21]
SPQw) ~ % {8(w) + M(w) + FM(w) + M(w) + FM(w)}
29) [22]
where FMw) is given by
[23]
FM(w) :.7-"7{2-(305 <2% t+ 2% ht (t))} (30) 24
[25]
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